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Dynamic equilibrium in granular flow obtained by a nonlinear dynamic equation
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We derive a nonlinear diffusion equation for a void density in the diffusing-void model of granular as-
sembly [Phys. Rev. Lett. 67, 828 (1991)] and present numerical solutions when the assembly is in dynam-
ic equilibrium. We find that the solutions exhibit unique features of the real granular flow patterns in a
confined geometry with and without obstacles; notable examples are the V-shaped kink at the free sur-
face, stagnant solids near the wall, and the shock front below the obstacle accompanied by the empty re-

gion.

PACS number(s): 05.40.+j, 46.10.+z, 64.60.Ht, 47.50.+d

In a recent paper [1], a discrete-random-walk model
termed the diffusing-void model [2] was proposed to
study the unusual properties of granular flows. The mod-
el is based on the assumption that the flow of granular
particles in a confined geometry is caused by the upward
motion of voids that result from the escape of granular
particles through an orifice. The model is /inear because
the walker performs biased random walk. It is, however,
nonlinear at or near the boundaries because the walker
proceeds only when there are available sites. For exam-
ple, the cascading process at the free surface, where the
walker simply rolls up, is not a diffusion process but a dis-
tinctively nonlinear process. In addition, when the walk-
er hits an obstacle, it stops there, which is again a non-
linear process. In the discrete random-walk model [1],
these nonlinear processes can be easily incorporated by
imposing a simple rule derived from observing the
motion of grains: the walker performs a biased random
walk only through available nearest-neighbor sites.

In order to study the dynamics of granular flows, how-
ever, we recognize that it is essential to find a dynamic
equation that can deal with the nonlinear processes men-
tioned above and correctly describe at least the most sim-
ple flow patterns of the granular particles. The purpose
of this paper is to present such a dynamic equation and
study its behavior. This is an extension of our recent
efforts along this direction [3], where an attempt has been
made to derive a dynamic equation of motion for the
grains by considering the continuity equation and the mi-
croscopic force balance equation of the coarse-grained
granular materials. A similar attempt has been made to
derive a dynamic equation of motion for the sandpiles in
the hydrodynamic limit based on pure symmetry argu-
ments [4], and the equation derived in Refs. [3] and [4]
happens to be identical except for the derivative term
along the vertical axis. The equation to be derived in this
paper contains a step function. When this step function
is approximated by a linear function, the equation is simi-
lar to those in [3] and [4], except for a higher-order
diffusion term along the x axis, which is irrelevant in RG
calculation, but appears to be important in real simula-
tion: it extends the region of kink at the free surface sub-
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stantially. Thus the most simple form of our dynamic
equation reduces to those discussed in [3] and [4]. It ap-
pears that the underlying physics of granular flows
should be simple, at least in the simple granular flow
problems considered in this paper, and it is our belief that
the simple rule proposed in [1] and summarized above
would be sufficient in describing the flow patterns.
Mathematically identical formulation of this rule might
be to replace the drift velocity by a step function. Com-
plexity and nonlinearity seem to enter in when we try to
approximate this step function by a smooth function.

In this paper, our attention is focused on the most sim-
ple granular flow patterns, namely the flow of granular
particles in a rectangular box through a hole at the bot-
tom (orifice) [Fig. 1(a)]. Experiment indicates that the
free surface soon develops a V-shaped kink with a tip an-
gle given by the angle of repose, after which the free sur-
face retains its shape. The diffusing void that enters at
the bottom then cascades upward upon reaching the free
surface and stays permanently where it has stopped, ei-
ther at the corners or at the free surface [Fig. 1(b)]. The
equation of motion for the diffusing void inside the box,
when it is free from boundary effects, is simply the biased
diffusion equation [1,2]

3,¥=—V-J=D,32¥—0d,¥, (1
where W(x,y,t) is the density of the hole, D, is the
diffusion constant along the x axis, and v is the drift ve-
locity along the y axis due to the gravity. The current
density J, corresponding to Eq. (1) is

J=—D3, Vi+vVy . %))

Note that this equation is good only when the walker is
away from boundaries such as the free surface and the
obstacle. We now have to add nonlinear terms to ade-
quately take into account the motion of the particle at
the boundaries, notably at the free surface and at or near
an obstacle (at the vertical wall, we impose the reflecting
boundary conditions). To this end we now make the fol-
lowing three observations.

First, the void must stop moving vertically when the
void reaches the free surface where the void density is 1
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(complete void). We model this by assuming that the
void velocity goes to zero when the void density is 1. The
ideal case would be to take v as a step function, which re-
quires infinitely many terms to represent. For simplicity,
however, we take a linear function v(¥)=v,(1—W¥), for
which case the current density due to drift, J,, becomes

T =vo(1—W)W§ , 3

with v, constant.
Second, by the same argument, the diffusion along the
X axis must vanish when W =1. Thus we take

J,=—D(1—W)3,¥% . )

Finally, in the diffusing-void model the void executes a
biased random walk. But when we take into account the
microscopic force balance equation along with the con-
tinuity equation and then go to the hydrodynamic limit,
the gradient term along the vertical axis must appear [3],
adding a new diffusion term to the vertical current den-
sity. Thus, we find that the total current

J,=—D,3,¥§+J, . (5)

By imposing the continuity equation 9,¥+V-J=0, we
then arrive at the nonlinear dynamic equaton for the void

(b)

FIG. 1. (a) The most simple granular flow patterns. Granu-
lar particles are confined in a two-dimensional box that has a
hole at the bottom. The free surface soon reaches the V shape
with a tip angle given by the angle of repose. (b) Upon discharg-
ing a particle through a hole (or an orifice), a void is created
that performs a biased walk upward. The void moves only
when there are available nearest sites; otherwise it stops and
stays there permanently.
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density W:
3, W=D, [02¥—d2(W?/2)]+D,d3¥ —v,(3,¥—d,¥?), (6

which is a special form of the generalized diffusion equa-
tion [3,4]

3,¥=D,VAV¥+a, ¥+ ---)+DR¥
+ 203, W+1,3,¥7+ - - - . o)

The most significant term in (6) is the last term, which is
responsible for the most unique features of granular
flows, such as the development of a kink at the free sur-
face, the formation of dead zones, the appearance of a
shock front, and the occurrence of an empty region below
the obstacle. Note that this nonlinear term results from
approximating the step function by a linear function [5].
Now, without the diffusion term along the y axis, the den-
sity quickly builds up at the top, eventually winning over
the diffusion along the x axis, no matter how big it is.
Thus, the diffusion along the y axis is necessary to
counterbalance the drift term. The second nonlinear
term in Eq. (6) is irrelevant in RG calculation [3,4] and
thus it might not be really necessary. Its presence, how-
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FIG. 2. (a) The second-order derivative with x at the wall
(i,j) contains three terms as shown in Eq. (8). However, the
terms —W,;;+W¥,;_; ; are missing because there is no site into
which the void can move to the left. The arrows indicate the
direction of the void flux. (b) At the corner (1,1), the flux along
the y axis is between two points, (1,1) and (1,2). Thus, again the
terms (¥,;_;—W¥,;;) should disappear in the second-order
derivative with y. (c) Right above the upper two corners
(1,1, +1) and (I,,/, +1) are located sinks toward which the void
diffuses out but is unable to come back. The arrows indicate the
direction of the void flux by which we find Eq. (11). Right
below the orifice, we place a source term that constantly gen-
erates voids. When the rate of void generation equals the rate
of death at the upper two corners, we reach the dynamic equi-
librium.
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ever, is certainly important at least in our numerical solu-  steady-state density profile as well as the current density
tions. Without it, the kink region in Fig. 3(a) shrinks  profile that is equivalent to the stream function.

substantially. We have not yet carried out large-scale We show a form similar to the master equation on a
simulations to sort out its relevance numerically. discrete lattice. The discrete equivalent master equation

We now solve Eq. (6) numerically and obtain the for (6) in a two-dimensional grid point (i, j) is

(Q) .0644 .9323 .999N. .00001.00001.00001.00001.00001.00001.00001.
.0902 .8366 .9985N .00001.00001.00001.00001.00001.00001.00001.
.0946 .6951 .99491 0 .00001.00001.00001.00001.00001.00001.00001.
.0872 .5372 .98631. .00001.00001.00001.00001.00001.00001.00001
.0746 .3965 .9673 .00001.00001.00001.00001.00001.00001.0000
.0607 .2879 .9240 .00001.00001.00001.00001.00001.00001.000§
.0479 .2096 .8351 .9984%00001.00001.00001.00001.00001.00001.004
L0370 .1540 .6973 .99481%00001.00001.00001.00001.00001.00001.0,
.0281 .1138 .5401 .98631. .00001.00001.00001.00001.00001
.0212 .0841 .3987 .9674 .00001.00001.00001.00001.0000
.0159 .0621 .2889 .9243 .00001.00001.00001.00001.
.0118 .0458 .2098 .8354 .99844.00001.00001.00001.00001.
.0088 .0338 .1538 .6974 .994813\00001.00001.00001.00001.
.0065 .0249 .1133 .5402 .98631.% .00001.00001.00001
.0048 .0184 .0836 .3987 .9674 .00001.00001.0000
.0036 .0136 .0617 .2889 .9242 £1.00001.00001.
.0026 .0100 .0454 .2098 .8352 .9984 .00001.
.0019 .0074 .0335 .1537 .6972 .9948
.0014 .0055 .0247 .1133 .5400 .98631.
.0011 .0040 .0182 .0836 .3985 .9673
.0008 .0030 .0134 .0616 .2887 .9237
.0006 .0022 .0099 .0454 .2096 .8341
.0004 .0016 .0073 .0335 .1536 .6955
.0003 .0012 .0054 .0247 .1132 .5381 A
.0002 .0009 .0040 .0182 .0836 .3968 .9657 .9998 .9657 .3968 .0836 .0182
.0002 .0006 .0029 .0135 .0616 .2873 .9187 .9989 .9187 .2873 .0616 .0135

(c)-

.020 .009 .006 .009 .020 .040 .059 .055 .037 .022 .014
gio .009 .006 .009 .020 .040 .061 .056 .037 .021 .013 FIG. 3. (a) Steady-state current density
.019

.008 .005 .008 .019 .041 .064 .057 .037 .021 .012

profile ¥ after the system has reached the dy-
namic equilibrium. The profile is generated by
numerically solving the nonlinear equation (7)
iteratively. In this run, D;=0.1, D,=1.0,
vo=1.0, I,=13, and /,=41. Note the V-
shaped region with ¥ =1 near the top and the
triangular region with W=0 near the wall.
The regions with W =0 are termed ‘‘stagnant
solids.” In real granular flows the angle of the
triangular region is given by the ‘“‘angle of re-
pose.” (b) Stream lines obtained by (4) and (5).
The length of the tail at a given point is pro-
portional to the magnitude of (c). Steady-state
current density profile in the presence of an
obstacle and stream lines (d). A one-
dimensional obstacle is placed symmetrically
in the middle of the box. In this run, vy=1.0,
D,=0.1, D,=1.0, v,=1.0, [,=19, and
l,=61. Note the appearance of stagnant solids
near the wall, the shock front; and the empty
region below the obstacle.
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W ()=D\(W;1;—2%,;+W,_, ;)
—D(Wi,, ;=295 +¥2_, )/2
+D2(wi,j+l—2wij+\yi,j~—l)
—}»(\Pij—-\l’i,j_]—‘l/%j+‘ll,%j_l), (8)

with D, =D, /Ax? D}{=D,/2,D,=D,/Ay* A=v,/Ay.
The two-dimensional box has a width /, and height /,.
One of the reasons in using the master equation is to deal
with the boundaries. For example, each term in the mas-
ter equation has a physical meaning. Consider the
second term in the right-hand side of Eq. (8), where flux
comes in to (i,j) from (i +1,;) and (i —1,;) and goes out
from (i, j) into (i +1,) and (i —1,j). Consider now points
at the left wall for 2<j Sly—l, in which case particles
can come and go only between (i,j) and (i +1,j). Thus,
the first term on the right-hand side of the above equation
becomes [Fig. 2(a)]

Dy(W, 1 (D—W,(1) , ©)

while at (1,1) the third term also should be modified [Fig.
2(b)] as

Dz(\l/i,j+1(t)'"w[j(t)) . (10)

At other boundary points, one can easily modify Eq. (7).

We now simulate the dynamical steady state by intro-
ducing a source term with a constant source density, say,
a just below the orifice and two sinks at (l,ly+1) and
(I,1,+1) [Fig. 2(c)]. At the corner (1,1)), the first term
of Eq. (8) has the same form as in Eq. (9), but the third
term now modifies to [Fig. 3(d)]

Dy (¥, () =2 (1)) . (11)

We now present numerical solutions of Eq. (8). In Fig.
3(a) is shown the steady-state density profile ¥ with
D,=0.1, D,=1.2, and v=1. The numbers represent
hole densities ¥ at each point. Note the appearance of a
V-shaped region with ¥ =1, which is precisely the kink
region shown in Fig. 1. When we increase D, the V-
shaped region shrinks and eventually disappears because
voids diffuse out too fast along the x axis. Also, near the
wall, there are regions where the hole densities ¥ =0, in-
dicating that holes are unable to penetrate. This is a re-
gion termed “stagnant solids.” The boundary lines that
divide this region from the bulk define the so-called “an-
gle of response.” In Fig. 3(b) is shown the streamlines ob-
tained by (4) and (5). Most flow occurs near the center
and near the free surface.

With an obstacle in the middle of the box, the steady-
state density profile is shown in Fig. 3(c) and its current
density in Fig. 3(d). Flow patterns near the top and near
the walls are similar to those seen in Fig. 3(a). There are,
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however, some differences. First, the vertical current
density J, right below the empty region near the top is
negative: the hole is pushed from above. This is prob-
ably due to the influence of the boundary. Second, while
the hole densities increase as one goes up toward the free
surface, there are columns below the free surface where
the density oscillates [fourth and fifth columns in Fig.
3(c)]. It is not clear whether this is a genuine feature of
the real system or an artifact of the model equation.
Note that the flow patterns near the obstacle exhibit no-
ble phenomena unique in granular flows: the appearance
of stagnant solids above the obstacle with ¥ =0 and the
empty region below the obstacle with ¥=1. The two
lines under the obstacle beyond which the voids cannot
penetrate (because W=1) have been termed a shock front
in [1] because of their similarity with the supersonic flow:
streamlines change abruptly after crossing the shock
front. Note that the shock must be distinctively non-
linear. As demonstrated in Fig. 3, Eq. (6) indeed yields
the remarkably similar flow patterns seen in the real ex-
periment (see Fig. 1 of Ref. [1]).

In summary, we have derived a nonlinear dynamic
equation and showed how its solutions produce unique
features seen in the most simple granular flow patterns.
The equation is relatively simpler to solve than the usual
kinetic equations [6]. It is a continuum equation and so
offers a way to handle the dynamics analytically, often a
hindrance in the cellular-automata approach [7]. It also
does not require the large-scale computation typical in
molecular-dynamics simulations [8]. It appears that the
dynamic equation derived in this paper might enable us
to describe the somewhat more complex dynamics
displayed by granular materials under various cir-
cumstances [9]; notable examples would be the convec-
tive flow patterns [10] that appear when the granular ma-
terials are subjected to vibrations and the segregation of
Brazilian nuts [11]. However, it might be possible that
Eq. (6) needs to be modified along the direction briefly
mentioned in [5] in order to study more complex flow
patterns of the granular particles, which are currently un-
derway.
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FIG. 1. (a) The most simple granular flow patterns. Granu-
lar particles are confined in a two-dimensional box that has a
hole at the bottom. The free surface soon reaches the V shape
with a tip angle given by the angle of repose. (b) Upon discharg-
ing a particle through a hole (or an orifice), a void is created
that performs a biased walk upward. The void moves only
when there are available nearest sites; otherwise it stops and
stays there permanently.



